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This is a synthesis of the following references [DK01], [Swi75], [DS95] and [BR20]. We will just
assume that Top refers to a convenient category for topological spaces (we want the smash to have an
adjoint).

1 Spectra in the wild

Mostly following Davis and Kirk. The first stable phenomena appearing is Freudenthals suspension
theorem for homotopy groups and its analogue for homology groups. (A coorrolery of) This theorem
essentially says that for any X the sequence

πi(X)→ πi+1(ΣX)→ πi+2(Σ
2X)→ · · ·

eventually stabilises, that is the maps all become isomorphisms. This leads to the definition of the
stable homotopy groups of a space as

πs
i (X) ..= colimkπk+i(Σ

kX).

For X = S0 these are commonly called the stable stems (for other spheres they are just zero). Because
suspending is just smashing with spheres and suspending a sphere gives you one higher sphere we can
see that the stable homotopy groups are exactly πs

i (X) = colimk[S
i+k, Sk ∧X].

The other stable phenomena as we observed was homology. Now we denote K(Z, i) the Eilenberg-
Maclane space, only non-trivial homotopy group is Z in degree i, then it is also a fact that

Hn(X;Z) = colimk[S
n+k, X+ ∧K(Z, k)]

where X+ = X ⊔ ∗. Now note that the stable homotopy groups form a generalised homology theory.
There is another stable phenomena that is less obvious. By the Pontryagin-Thom construction we

have a bijection
Ωfr

k−n,M ↔ [M,Sn]

where Ωfr
k−n,M is the space of k − n dimensional framed submanifolds of M up to framed co-bordism.

The bijection in the forward direction is given by taking a submanifold with a framing (N, ν) to the so
called collapse map, M → Sn = Rn∪∞ given by sending everything outside of N to∞ and everything
in N to its framing (which is a vector in Rn). In the reverse it is given by taking a map f : M → Sn
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and simply looking at f−1(r) for r some regular value, this submanifold has a framing by pulling back
the standard framing on the sphere. This theorem has a slight refinment to the following

Ωst+fr
k (X) ∼= πs

k(X+)

where the group on the right is that of stably framed bordism classes of k dimensional manifolds over
X. Other bordism theories, for any stable structure on a vector bundle, are also representable in
this way. Note the difference between bordism and stable homotopy groups, they are both homology
theories but stable homotopy is reduced.

This suggests that stable phenomena, stable invariants should be given by limits of homotopy
groups where we smash with some “representing space”.

2 An explicit construction of a category

We will now define the category of spectra, with the aim in mind, that we will make precise later, of
capturing stable phenomena such as these.

Definition. The category of sequential spectra, denoted SN, has objects E = {En, σn}n∈N sequences
of spaces with maps σn : ΣnEn → En+1. A morphism f : E → F is a collection of maps fn : En → Fn

such that the obvious diagram commutes

S1 ∧ En = ΣEn ΣFn

En+1 Fn+1

id∧fn

σ σ

fn+1

This category is not stable in the sense that we will later define, for one thing it has not enough
isomorphisms, that is multiple spectra can represent the same homology theory (although all homology
theories are represented). We define the homotopy groups of a sequential spectrum as a colimit

πi(E) ..= colimkπi+k(Ek)

Then the notion of weak equivalence between spectra is the same as Top, a map of spectra that induces
an isomorphism on all homotopy groups. We then define the so called stable homotopy category as
the localisation of sequential spectra at these weak equivalences.

Example. The sphere spectrum is S = {Sn}n where the structure maps are the homeomorphisms
ΣSn → Sn+1.

Example. K(Z) = {K(Z, n)}n whose structure maps are given by the adjoint of the homotopy equiv-
alence ΩK(Z, n+ 1) ≃ K(Z, n), to be specific

h ∈ [K(Z, n),ΩK(Z, n+ 1)] ∼= [ΣK(Z, n),K(Z, n+ 1)]

by the adjunction.

This category has an explicit description of the morphisms given by so called “cofinal” maps. This
is a little clunky so we will just sketch it. For two CW spectrum, spectrum where every space is
CW complex and the structure maps are inclusions of subcomplexes (they are the fibrant objects)
a subspectrum F ⊆ E is called cofinal if each cell of the spectrum (a cell in some space), under the
inclusion into the higher levels of the spectrum, eventually ends up in F . Morally E is sort of becoming
F in the limit. We can now describe the morphisms E → F , let

S =
{
(E′, f ′) : E′ ⊆ E cofinal , f ′ : E′ → F a function

}
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be maps from cofinal subcomplexes into F . Then we say that two such maps are equivalent (E′, f ′) ∼
(E′′, f ′′) iff there is an (E′′′, f ′′′) cofinal in E′ ∩E′′ such that f ′, f ′′ and f ′′′ agree on E′′′. (something
like the germ of the functions). Composition can just be defined by picking representatives that make
sense to compose.

Remark. A spectra is called an Ω spectrum if the adjoint maps to the structure maps are all (weak)
homotopy equivalences, these are the fibrant objects. It is called CW if every space in the spectrum is
a CW complex and the structure maps are inclusions of subcomplexes, these are the cofibrant objects
in the unstated model structure. A spectra with only finitely many negative homotopy groups is
called connective, with no negative homotopy groups is called connected. Every loop space defines
a connected Ω spectrum by applying Σ∞ defined below, in particular we deloop it at each step and
the structure map is just a chosen homotopy equivalence (which exists because it is an infinite loops
space).

Remark. It is a corrolerary of the Brown representability theorem that every reduced cohomology
theory is represented by a spectrum. Given a spectrum {En} then we have a cohomology theory given
by

hn(X) = colimk[X ∧ Sn+k, En+k] = colimk[X,En]

(equality given by adjunction) or a reduced homology theory given by

hn(X) = colimk[S
n+k, X+ ∧ En]

One thing to note is that to get the cohomology theory we really need the structure maps; even though
we can get the groups as above to construct the long exact sequences we need the maps. Also notive
that we can make the theories unreduced by just precomposing with X 7→ X+.

Example. We have already seen that Ωfr+st
k (−) is the unreduced theory associated to the sphere

spectrum, while πs
∗(−) is the reduced theory. There is also K(Z) which represents ordinary cohomology

and homology. Finally topological K theory is represented by Z×BU in even degrees and Ω(Z×BU)
in odd degrees.

Remark. Sequential spectra do not have a nice notion of product defined on them, this is where
things like symmetric and orthogonal spectra come in. By rigidity we can go between them at the
level of the homotopy category.

3 Why this category?

In [BR20, 1.1.4] gives the following list of desiderata for a stable homotopy category SHC, that is a
category that captures all of our stable phenomena. The properties are as follows

1. There should be a natural adjunction

Σ∞ : HoTop ⇌ SHC : Ω∞

2. Given two spaces A,B there should be a bijection

[Σ∞A,Σ∞B] ∼= [A,B]stab ..= colimk[Σ
kA,ΣkB]

between homotopy classes of maps of their spectra and stable homotopy classes of maps of the
spaces.

3. For every (co)homology theory there is a unique up to isomorphism object that represents theory.
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4. A map in SHC should induce a natural transformation on the (co)homology theory.

5. Various nice categorical properties, such as being monoidal, cartesian closed and being enriched
over graded abelian groups.

These are obviously all very reasonable and desirable, moreover encapsulate stability. Either explicitly
requiring hom sets to be stable hom sets for spaces, or by requiring it to be representing cohomologies,
which by our examples are somehow given by stable homotopy groups of smashing with spaces. Now
the theorem is that the category of sequential spectrum localised at weak equivalences satisfies all of
these properties. There is also a type of uniqueness, called rigidity

Theorem ([BR20], 5.7.1). If C is a stable model category and there is an equivalence of triangulated
categories

SHC → HoC
then C is Quillen equivalent to sequential spectra.

We wont define any of this here but the point is that if two model categories present the stable
homotopy category as its homotopy category then they are equivalent. Note that it doesnt say that if
you satisfy these axioms you are equivalent to the stable homotopy category as defined above, merely
that the stable homotopy category is one category satisfying these things and any model category
representing this category are equivalent.

4 Some functors just lying around

Now we have defined our category of spectra as well as our stable homotopy category. Theyre are
many functors to and from these categories that are useful to know.

There is an (Quillen) adjunction called the shifted suspension / evaluation

Fd : Top ⇌ SN : Evd

X 7→

{
Σn−d, n ≥ d

∗, else

Kd ←[ {Kn}n
The left adjoint is faithful, the derived functors, those induced on the homotopy category are not
faithful, as some maps may be identified after repeated suspension. We denote Σ∞ = F0, this can also
be thought of as the left derived functor of the above. The right derived functor is denoted Ω∞, note
that it indeed always produces an infinite loop space. Moreover it is clear that

πn(F0(X)) = πs
n(X)

the stable homotopy groups.
Unrelated to this is the functor given by wedging and homing to a topological space. Let A be an

ordinary space and E be a spectrum, then

E ∧A ..= {En ∧A}n
Hom(A,E) ..= {Hom(A,En)}n

which gives the loop and suspension of spectra ΣE = E ∧ S1 and ΩE = Hom(S1, E). These two form
a Quillen adjunction

Σ : SN ⇌ SN : Ω

that is moreover an equivalence.
We might have indexed by Z , however there is again a Quillen equivalence

SN ⇌ SZ

given by truncating in the backward direction and extending into the negative degrees by the point in
the forward direction.
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